

INTERNATIONAL
STANDARD

ISO
2878

Third edition
2005-06-15

**Rubber — Antistatic and conductive
products — Determination of electrical
resistance**

*Caoutchouc vulcanisé — Produits antistatiques et conducteurs —
Détermination de la résistance électrique*

ISO 2878

Reference number
ISO 2878:2005(E)

© ISO 2005

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword.....	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Principle	1
4 Apparatus	2
5 Test conditions	2
6 Procedure	3
7 Procedural details applicable to different products.....	4
8 Test report	5

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2878 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

This third edition cancels and replaces the second edition (ISO 2878:1987), which has been technically revised.

Introduction

The elimination or reduction of static voltages and charges on rubber products is important in many applications. By providing suitable leakage paths, the charge can be dissipated. The antistatic properties of a product are also influenced by its electrostatic charging characteristics. This International Standard deals only with methods involving the use of leakage paths.

The addition of carbon black to a polymer in sufficient quantities causes a conductive network of carbon particles to be formed within the mixture, and materials with a wide range of electrical conductivity can be produced. The conductive network is sensitive to mechanical strain, and the electrical resistance of the material varies according to the degree of strain and the time and temperature history after straining. Antistatic properties may also be conferred on rubber materials by incorporating ionizable materials into the rubber mix.

A method for the measurement of the resistivity of specially prepared test pieces of antistatic and conductive rubber is described in ISO 1853.

Rubber — Antistatic and conductive products — Determination of electrical resistance

WARNING 1 — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

WARNING 2 — Certain procedures specified in this International Standard may involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use.

1 Scope

This International Standard specifies a method of determining the electrical resistance of antistatic and conductive products manufactured wholly or in part from rubber whose electrical resistance measured between defined points, when new, does not exceed $3 \times 10^8 \Omega$ and whose conductivity is derived from the addition of carbon black and/or other appropriate substances to the bulk of the material.

This International Standard specifies the electrode configuration for basic geometries but reference should be made to relevant product specifications for requirements for specific products.

It does not apply to:

- a) products where the relevant surfaces are composed of mixtures of insulating and conductive areas;
- b) products with a substantial surface area of insulating material (except for footwear, which does not normally have a conductive or antistatic upper).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1853, *Conducting and dissipative rubbers, vulcanized or thermoplastic — Measurement of resistivity*

ISO 23529, *Rubber — General procedures for preparing and conditioning test pieces for physical test methods*

3 Principle

The resistance between two positions on a product is measured, using a defined system of electrodes, by a method suited to factory inspection or service testing.

4 Apparatus

4.1 Test instruments

The test shall be made with an instrument having a nominal open circuit voltage of 500 V DC, preferably an insulation tester (ohmmeter), or with any suitable instrument known to give comparable results.

The instrument shall be sufficiently accurate to determine the resistance to within 10 % and shall not dissipate more than 3 W in the product.

The resistance values obtained will vary with the applied voltage, and errors may occur when low test voltages are involved. In cases of dispute, the voltage applied to the product shall be not less than 40 V, except where this conflicts with the requirement not to dissipate more than 3 W in the test piece.

4.2 Electrodes and contacts

Unless otherwise specified in the product standard, electrodes shall be formed on the surface by means of a conductive silver lacquer, colloidal graphite or a conductive liquid of the following composition:

- anhydrous polyethylene glycol (of molecular mass 600): 800 parts by mass;
- water: 200 parts by mass;
- any suitable wetting agent: 1 part by mass;
- potassium chloride: 10 parts by mass.

When a conductive liquid is used, the electrode contact area shall be completely wetted and shall remain so until the end of the test.

The conductive silver lacquer or colloidal graphite shall be dried in air at standard laboratory temperature; the surface resistivity of the dried film shall be below 100 Ω .

Clean metal contacts shall be applied to the electrodes so that the contact area is approximately the same size as, but not greater than, the electrodes, except where otherwise stated.

The surface of the product shall not be deformed either during the application of the contacts or during the test, unless specified in the product standard. The product shall be supported on an insulating surface except when otherwise specified. The insulating surface shall be such that its volume resistivity is greater than $10^{10} \Omega \cdot \text{m}$ or sufficiently great that, when using two electrodes as described in 7.1 on the insulating surface, the resistance is too great to be indicated using the instrument used to test the product.

5 Test conditions

5.1 Test atmospheres

All tests shall be carried out under one of the following sets of laboratory conditions in accordance with ISO 23529:

$(23 \pm 2)^\circ\text{C}$ and $(50 \pm 5)\%$ relative humidity

or

$(27 \pm 2)^\circ\text{C}$ and $(65 \pm 5)\%$ relative humidity.

However, where very large products are being tested, it is permissible, by agreement between supplier and customer, to use the conditions prevailing in the factory, warehouse or laboratory, provided that the relative humidity is not more than 70 %. The temperature and humidity shall then be reported.

5.2 Time interval between product manufacture and testing

The minimum time interval between product manufacture and testing shall be 16 h. Whenever possible, the time interval between manufacture and testing shall not exceed 3 months. In other cases, tests shall be made within 2 months of receipt of the product by the customer.

5.3 Temperature and humidity conditioning

The products shall be conditioned for at least 16 h in one of the following sets of standard laboratory conditions in accordance with ISO 23529:

(23 \pm 2) °C and (50 \pm 5) % relative humidity

or

(27 \pm 2) °C and (65 \pm 5) % relative humidity.

However, where very large products are being tested, it is permissible, by agreement between the supplier and customer, to use the conditions prevailing in the factory, warehouse or laboratory, provided that the relative humidity is not more than 70 %.

5.4 Mechanical conditioning

During the time-interval between manufacture and testing, or between receipt of the product and testing, the product shall be subjected to one of the following conditions:

- Maintain in the undeformed state at standard laboratory temperature without straining in any way.
- Immediately before the temperature and humidity conditioning period, strain once to the maximum limit to which the product is strained in normal use.

NOTE The two methods a) and b) will not necessarily give the same results. The choice of method will normally be stated in the relevant product standard.

6 Procedure

6.1 Cleaning

Clean the surfaces of the product by rubbing with a paste of fuller's earth (aluminium magnesium silicate) and water, washing with distilled water and allowing to dry at a standard laboratory temperature. Do not buff or abrade the test surfaces.

6.2 Application of electrodes

Apply the electrodes and metal contacts (4.2) as appropriate to the product to be tested as described in Clause 7.

6.3 Reconditioning

Recondition the product for not less than 15 min and not more than 2 h under the conditions specified in 5.3.

6.4 Determination

Support the product on an insulating surface and apply the voltage in the manner appropriate to the product as described in Clause 7, taking the resistance reading (5 \pm 1) s after the application of the voltage.

As some materials are sensitive to moisture, take care to avoid breathing on the samples prior to and during the test.

6.5 Number of tests

The number of tests shall be decided in accordance with the following criteria, in order of preference:

- a) by reference to an International Standard for the particular product, if one exists;
- b) by applying the following principles:
 - 1) for small products such as furniture feet and for products used between defined contact points such as engine mounts, one test shall be made;
 - 2) for other products such as tyres, sheeting and belting, at least five tests shall be made on different areas chosen so that the tests will be representative of the electrical properties of the whole product.

All the test results shall be within the specified limits unless otherwise stated.

7 Procedural details applicable to different products

7.1 Tests on one surface

Apply electrodes to two areas, each a square with sides approximately 25 mm long, such that the distance between the facing edges is (50 ± 5) mm and located on the same surface of the product being tested.

Apply the metal contacts to the electrodes and measure the resistance.

7.2 Tests between two surfaces

Apply electrodes to two areas, each approximately 25 mm square. The test areas shall be located so that the results represent the electrical resistance of the normal discharge path in the working conditions anticipated. Specifications for particular products will normally state the location of the test areas.

Apply the metal contacts to the electrodes and measure the resistance.

7.3 Tests on products bonded or clamped to metal parts

7.3.1 Products bonded or clamped to one metal part

Apply an electrode to an area as nearly as possible 25 mm square on the working surface of the product; the area shall not extend to other surfaces.

Apply a metal contact to the electrode and measure the resistance from this contact to the bonded or clamped metal.

7.3.2 Products bonded or clamped to two metal parts

Measure the resistance between the metal parts.

7.4 Tests on tubular products

7.4.1 Tests between inside surface and outside surface

Two tests shall be carried out in accordance with a) and b):

- a) Apply electrodes on the inside surface at one end (A) of the tubing and on the outside surface at the other end (B). The electrodes shall be 25 mm wide bands extending round the complete circumference.

Apply the metal contacts to the electrodes and measure the resistance.

b) Proceed as specified in 7.4.1 a), but with the electrodes situated on the inside surface at B and on the outside surface at A.

Ensure that there are no stray leakage paths in parallel with the product resistance and that no electrically conductive contact takes place between coils of the tubing.

7.4.2 Tests on tubing over 6 m in length, on ends only

Apply electrodes on the inside surface at one end of the tubing and on the outside surface at distances of 3 m and 6 m from the same end. The electrodes shall be 25 mm wide bands and extend around the complete circumference.

Apply the metal contacts to the electrodes. Measure the resistance R_a between the inside contact and that at 3 m and the resistance R_b between the inside contact and that at 6 m. The difference between the values R_a and R_b shall be regarded as the resistance for 3 m of the tubing, provided that no reading exceeds $10^7 \Omega$. If any reading exceeds $10^7 \Omega$, thoroughly check all electrodes and repeat the test.

Ensure that there are no stray leakage paths in parallel with the product resistance and that no electrically conductive contact takes place between coils of the tubing.

7.4.3 Tests on tubing with permanently attached end fittings

Measure the resistance between the fittings.

8 Test report

The test report shall include the following particulars:

- a) a reference to this International Standard;
- b) product details:
 - 1) a full description of the product and its origin,
 - 2) compound details and cure condition, if known,
 - 3) the number of products tested;
- c) test details:
 - 1) whether or not mechanical conditioning was carried out,
 - 2) the temperature of test, if other than standard laboratory temperature, and the relative humidity if necessary,
 - 3) the date of testing,
 - 4) any deviations from the procedure specified;
- d) test results:
 - 1) the individual test results,
 - 2) the mean test result.

ICS 83.060

Price based on 5 pages